Uttam Bhat	Postdoctoral Scholar, University of California, Santa Cruz uttambhat13@gmail.com GScholar GitHub Homepage (857) 250-0048
	Postdoctoral Scholar, University of California, Merced (2017-2019) Ph.D, Physics, Boston University (2012-2017) Visiting Graduate Student, Santa Fe Institute (2014-2017)
	B.Tech, Engineering Physics, Indian Institute of Technology Bombay (2008-2012)

Technical skills

- Stochastic process, ODE, PDE, Numerical simulations, Spatio temporal modeling, Computational modeling, Machine Learning, Neural networks, Gaussian Process, Data analysis, Scientific writing and communication
- Python, C++, Pytorch, Tensorflow, Julia, Fortran, MATLAB, Mathematica

Machine Learning, Neural Networks, Gaussian process	 Dynamical Recurrent Neural Network: NN structure for partially observed nonlinear dynamics time series. Performs up to 30% more accurate in data-limited applications Gaussian Process Regression: Implemented GPR for nonlinear time series forecasting with uncertainty quantification
Computational Modeling, Numerical simulations Algorithms, High-Performance Computing	 Used first-passage principles and stochastic dynamic programming (SDP) to solve optimal foraging strategy of desert rodents in the Sevilleta ecosystem. Implemented the SDP algorithm in C++ and OpenMP for scalability Developed a C++ package to simulate user-defined foragers on user-defined clustered maps. Implemented mesh algorithms for efficient simulations. Developed a C++ package to simulate lattice foragers using binary-tree data structure to speed up simulations in high dimensional sparse landscapes by over 100x.
Mathematical Modeling, Stochastic calculus	 Population dynamics in uncertain resource environments: Modeled uncertain clustered resource landscapes. Parameterized model with real-world resource data from Google Earth to explain the evolutionary trends in herbivorous mammals. Optimized stochastic search with resetting: Analytical solutions and numerics Modeling isotope variance using stochastic calculus: Analytically solved SDE Discrete random-walk model of foraging dynamics: Analytical solutions to a non-Markovian process of a directed random walk on a dynamic resource landscape
Leadership, Communication, Mentoring, International Olympiads	 <u>16 peer-reviewed papers</u> in physics, ecology and interdisciplinary journals Six conference talks on complex networks, non-equilibrium systems, ecology and ML. Mentored two doctoral students and one undergraduate student Teaching assistant for Physics Lab, Probability and Statistics Student Facilitator for the Training and Selection Camps for Astronomy Olympiads Convener, Music club, IIT Bombay. Organized over twenty events for a combined audience of over 4000. Bronze medal, International Olympiad on Astronomy and Astrophysics, Indonesia, 2008. Silver medal, 12th International Astronomy Olympiad, Ukraine, 2007.